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Underresolved numerical schemes for hyperbolic conservation
laws with stiff relaxation terms may generate unphysical spurious
numerical results or reduce to lower order if the small relaxation
time is not temporally well-resclved. We design a second-order
Runge-Kutta type splitting method that possesses the discrete ana-
logue of the continuous asymptotic limit, which thus is able to
capture the correct physical behaviors with high order accuracy,
even if the initial layer and the small relaxation time are not numeri-
cally resobved. © 1995 Academic Press, Inc.

1. INTRODUCTION

Hyperbolic systems with relaxations occur in the study of
a variety of physical phenomena, for example, in linear and
nonlinear waves {42, 36), in relaxing gas flow with thermal
and chemical nonequilibrium [41, 9], in kinetic theory of rare-
fied gas dynamics [6], in viscoelasticity [33], and in multiphase
and phase transitions [15, 38]. These problems can be described
mathematically by the system of evolutional equations

6,U+V-F(U):éQ(U), UERY. (1.1)

We will call this system the relaxation system. Here we use
the term relaxation in the sense of Whitham [42] and Liu [29]
to denote the relaxation term (U} that determines uniquely the
local equilibria U = é(u) for # (# < N) independent conserved
quantities . £ is called the relaxation time. As e — 0, u formally
satisfies an n X n equilibrium system,

dae + V-flu)y =0. (1.2)
A system of conservation laws with relaxation is stff when
g is small compared to the time scale determined by the
characteristic speeds of the system and some appropriate
length scales.

Theoretical study for these relaxation problems began by
Whitham for linear problems [42]. For nonlinear hyperbolic
systems of two equations the stability of the equilibrium equa-
tion and the zero relaxation limit were proved by Liu [29] and

Chen, Levermore, and Liu [7] under an interlace condition
between the characteristic speeds of the relaxation system and
those of the equilibrium system. Such an interlace condition
was referred to as the subcharacteristic condition by Liu [29].

We are interested in high order numerical methods for the
stiff relaxation system (1.1). In particular we would like to
investigate the possibility of obtaining the macroscopic behav-
ior described by the equilibrium system (1.2} by solving the
original relaxation system (1.1) with coarse grids (At, Ax »
g}. Short of resolution of the small relaxation time g, this
approach is usually referred to as the underresolued numerical
method. Of course one can just solve directly the equilibrium
system, which may often be a simplification. However, in many
circumstances, the relaxation time varies from order one to
much smaller than unity. There it is usually impossible to
split the problem into separated regimes and solve directly the
eqguilibrium system in the stiff regime. The appearance of a
wide range of relaxation time occurs in, for example, relaxing
gases [9] and the hypersonic computations in reentry problems
{12]. Thus one has to use one system, i.¢., the original relaxation
system, in the whole domain. Here, as a first, yet difficult and
crucial, step toward developing a scheme that works for all
ranges of the relaxation time, we will focus on the stiff regime.
In this regime, reasonable schemes should allow the usage of
time and spatial increments that are much bigger than the small
relaxation time &.

We call numerical schemes for the stiff relaxation system
(1.1) robust in the following sense:

i, They should have a stability constraint independent of
the small relaxation time. The Courant—Friedrichs—Lewy
(CFL) number should be determined solely by the nonstiff
convection part.

ii. They should be modern, high resolution shock-captur-
ing and can properly handle the discontinuous features of the
problem, yielding correct shock location and speed without
numerical oscillations.

iii. They should give the correct macroscopic behavior with
high order accuracy by using coarse grids that do not resolve
the small relaxation time &.
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Usually in a stiff source problem one can overcome the
severe stability constraint by using implicit source terms during
the time integration. In doing so one can expect a scheme with
a CFL number independent of the small relaxation time &; i.e.,
the CFL number will depend solely on the convection part.
Since the only stiffness appears in the source term, it is very
natural to use explicit convection terms [43]. Therefore, numeri-
cal stability is not the central issue here. Critical to hyperbolic
systems with stiff source terms is that the underresolved numeri-
cal methods, although stable, may yield spurious numerical
solutions that are totally unphysical. High order schemes may
also reduce to lower order when the mesh fails to resolve the
small relaxation time.

In this article we implement a second-order Godunov scheme
(the MUSCL scheme by van Leer [40]) for the stiff relaxation
system (1.1) under the subcharacteristic condition. The choice
of MUSCL is not essential here, for other high resolution meth-
ods, such as the PPM method of Collela and Woodward [11]
or the ENO scheme of Harten, Engquist, Osher, and Chakravar-
thy [19] may also serve our purpose. Here the Godunov scheme
is meant for the convection part of the relaxation sytem only,
and the Riemann problem does not take the effect of the source
term into account. A method of line approach is considered
here, combined with a Runge—Kutta method for time marching.
The purpose of this paper is to show how a splitting second-
order time discretization can be done to obtain a robust shock
capturing method in the sense described above.

Earlier Pember studied similar problems in [30, 31]. Our
understanding of this preblem is that poor numerical results
may be generated if the numerical scheme does not have the
correct asymptotic limit. A scheme for the relaxation system
(1.1) is said to have the correct asymptotic limit if for fixed
Ax and At, as € — 0, the limiting scheme is a good (consistent,
stable, and high order) discretization of the equilibrium system
(1.2). In other words, the numerical scheme possesses a discrete
analogy of the asymptotic limit that leads from the relaxation
system (1.1) to the equilibrium system (1.2}, We illustrate our
idea through a model relaxation system to be specified below,
and design a second-order time integration that works for the
general relaxation systems defined in the beginning of this
section.

The stiff source problem also arises in the computations of
reacting flows. There the smeared numerical shock profile may
trigger the reaction to the wrong equilibrium, thus causing
incorrect shock speed [10, 28]. Various numerical methods are
suggested in the literature, which require some sort of resolution
in the reacting front [1, 2, 14, 17, 18, 39]. The stiff source
terms in these problems have both stable and unstable local
equilibria; thus they have essential differences from the relax-
ation systems we study here.

An important class of relaxation problems lies in the kinetic
theory of rarefield gas dynamics. There the relaxation describes
the interactions of particles and the relaxation time is the mean
free path, When the mean free path is small, the kinetic equation

approximates the compressible Euler or Navier—Stokes equa-
tions, known as the fluid dynamic limit. Numerical simulations
of kinetic equations with small mean free path lead to the
development of Boltzmann schemes or kinetic schemes for the
compressible Euler equations [20, 32] that do not use the solu-
tion of the Riemann problem.

The correct asymptotic limit analysis was applied earlier in
the literature. It was used to study and develop numerical
schemes for the neutron transport equation in diffusive regimes
[25, 26, 21, 22]. The diffusive behavior of spatially underre-
solved, semidiscrete high order Godunov schemes for hyper-
bolic systems with stiff relaxation terms was studied in [23],
applying a combination of the correct asymptotic limit analysis
and the modified equation analysis. The underresolved numeri-
cal method was also studied for hyperbolic systems in oscilla-
tory fields; see, for example, [13].

We choose to analyze in detail the numerical discretizations
of a prototypical relaxation model [7]

dh+ow=0 (1.3a)

dw + d plh) = —% (w—fhy), e>0,p'W)=0 (1.3b)

This system is hyperbolic with two distinct real characteristics
speeds =Vp'(h). The positive parameter £ is the relaxation
time for the system. The relaxation term is stiff when £ <€ 1;
that is, the relaxation time is much sherter than the time it takes
for a hyperbolic wave (sound wave) to propagate over a gradient
length. The leading term approximation to Egs. (1.3) is

dh+ 8, f(h)y=0.

(1.4a)
(1.4b)

By looking for the (&) correction to the approximation (1.4},
one obtains a dissipative evolution equation [7],

w=f(h) — e(p'(h) — f'(h))d. h,
ah + 8, f(h) = &0, ((p'(h) — f'(R})o:h).

(1.5a)
(1.5b)

provided that the characteristic speed ' (%) interlaces with those
of system (1.3),
—Vp'(h) =f{l)=Vp'(h).

This is the subcharacteristic condition of Liu [29] for (1.3).

The asymptotic expansion here is analogous to the Chap-
man—-Enskog expansion in rarefied gas dynamics modeled by
the nonlinear Boltzman equation close to its fluid dynamic
limit when the mean free path is small [5, 6]. Adopting the
terminology of kinetic theory, the feading term approximation
(1.4) is referred to as the Euler limit, while approximation (1.5)
is usually called the Navier—Stokes limit. Equation (1.5a) can
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be called the local Maxwellians or local equilibria. As the
Chapman—Enskog expansion is formal in the sense that it may
not be valid when the solution is near regions with large gradi-
ents, our numerical asymptotic analysis is only valid when the
solution is smooth.

In Section 2 we perform a detailed initial layer analysis
for (1.3). The result indicates that the initial layer projects
the initial data to the local equilibrivm. This information is
needed since we want a scheme that does not resolve the
initial layer. In Section 3 we begin our study with the first-
order splitting method and Strang’s splitting method. First
we show that, by doing the first time step fully implicitly,
the scheme automatically projects the initial data into the
local equilibrium, thus the scheme does not need to resolve
the initial layer nor to preprocess the initiat data. We then
show that the Strang splitting may fail to maintain its second-
order accuracy as & — 0, thus it does not have a good limit
when the mesh does not resolve &. A second-order splitting
scheme is developed which combines the high order Godunov
schemes with an implicit ODE solver in a second-order total-
variation-diminishing (TVD) Runge—Kutta formulation. This
scheme is robust in the sense described above. In contrast
to the conclusion of Pember in [31], where he conjectures
that unsplit schemes must be used for the relaxation system,
our analysis indicates that it is not the splitting that causes
the spurious or poor solutions. Rather, any schemes, split
or unsplit, violating the correct asymptotic limit lead to
spurious or poor sclutions. In Section 4 we show some
numerical examples that seem to agree with our analysis.

Although the analysis and experiment are carried out on the
model problem (1.3), the result extends far beyoend this model.
In Section 5 we apply the new splitting scheme developed in
Section 3.5 to two more general relaxation systems, including
the Broadwell model of the rarefied gas dynamics, and the
Eulerian gas dynamics with heat transfer. Numerical results
show that for these problems the new splitting scheme does
give the comect equilibrium behavior without resolving the
small relaxation time. Since our analysis concentrates on the
time integrator, which is dimension independent, thus it also
works for higher dimensional problems [24].

2. THE INITIAL LAYER ANALYSIS

Since the underresolved numerical schemes exhibit spurious
behavior in the presence of the initial layer, such as the incorrect
local equilibria and the wrong shock location, which do not
appear if there is no initial layer, it is important to understand
the initial layer behavior of the relaxation system. In this section
we perform an initial layer analysis on the model system (1.3).
The analysis here is in analogy to the similar analysis performed
by Caflisch and Papanicolaou ([5]} on the Broadwell model of
the Nonlinear Boltzmann Equation close to its fluid dynamic
limit when the mean free path is small.

Introducing a stretched time variable

T=tle

and considering # and w as functions of Tand x, Eq. (1.3) then
takes the form

1

Sah+aw=0, (2.12)
&

Lo+ 8upth) = = v — S, (2.1b)

with initial conditions
RO, 0 = R0, w0, x) = wix)
We look for an expansion such that
h=hyt,x) + e, x)+ - + K7 x)

+ ehit(r, x) + -, 2.22)
w = wo(t, x) + ew(t, x) + - - + wi(r, x)

+ewl(n, ) + o, (2.2b)

where b, + &by and wy + ew, are functions already determined

by (1.3) up to the initial condition and an Q(e?) error.
We insert (2.2) into (2.1):

1 3 [hyt, x) + eryt, x) + - + BT, x) + ehfl{z,x) + -+ ]
g

+ a.[wolt, x) + ew (6, x) + - - + Wi, 0) + ewl(7, x)

+---1=0,

éar[wo(t, 0 +ew(t,x)+ - Fwitnx) +ewl(nx + -]
+ 0,p(hy(t, x) + ehi(t, x) + - - - + BT, x) + ghl{m, x) + -+ *)
+ é [walt, x) + ewi(t, x) + - - + wiHn, x) + ewil(r, ) + -+

— fho(t, x) + ely(t, x) + -+ + BT, ) + bl (7, x)
+oe =0,

Equating to zero coefficients of equal powers of £ gives the
following equations for the initial layer terms:

a.h =0, (2.3a)
A+ wy + Wi — f(hy + By = O; (2.3b)
a'rh{L + a:h{) + axwll + axwéL = 01 (243)

it + dywy + 8, plhy + h{)’“)

tow T wlt = f(hy + R+ AP =0, (2.4b)
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In these equations all the terms of the interior expansion ap-

pearing on the right side are evaluated at t = 0 after the indicated
operations have been performed.

© We attempt now to solve (2.3) and (2.4) recursively so that

Hi(7, x) and wit(r, x) decay to zero as T — o uniformly along

x derivatives for k = 0, 1, ..., and

hy(0, x) + K = H(x), (2.52)
wo(0, x) + wit = wi(x): (2.5b)
RO, 0+ HE=0, k=12, ..., (2.5¢)
w0, x) Fwit =0, k=12, ... (2.5d)

LEmMa 2.1, Ler w0, x) = f(hy(0, x)} be the local equilib-
rium to the leading order and hiH(0, x) = 0. Then the nonlinear
system of ordinary differential equations (2.3} has a unigue
solution, exponentially decaying as ™ — <, uniformly in x,
with the initial condition (2.5). Morecuver, x derivatives of the
solution also decay exponentially as T — oo, unjformly in x.

Proof.  Since A0, x) = 0, one immediately obtains from
Eq. (2.3) that

K(r,x)=10, forany 7=0. (2.6)

Thus (2.5a) gives
Ro(0, x) = A'(x).

Applying (2.6) and the assumption wy(0, x) = f(hy(0, x)) in
(2.3b) then gives

dwlt = —wh, 2.7

The existence of a unique exponential decay solution wi is
obvious from (2.7). The statement about x-derivative follows
similarly after differentiating (2.7) with respect to x which is
just a parameter here. The proof of the lemma is complete. ||

Remark. Lemma 1 and (2.5) imply

ho(0,x) = H(), BT, x)=0;

WU(O, I) = f(hf(x))’

(2.8a)

wy = wilx) — f(K'(x).  (2.8b)

With Lemma 1, the leading term interior approximation

8,hy = —3a,.f(he) from (1.2a), and (2.5), we can now reduce

Eq. (2.4) to

9. = —awi, (2.9a)

awl = —wit + ' (h)*d.hg — p'(ho)d.hy — wi + ' (ho)(hy + RE).
(2.9b)

Lemvia 2.2, Let wi(Q, x) = £ (ho(0, 0)9,h0(0, x) — p' (o0,

x0)0.(0, x) and k{0, x) = 0. Then the nonlinear system of
ordinary differential equations (2.4) (or equivalently (2.9)) has
a unique solution exponentially decaying as T— o, yniformly
in x, with the initial condition (2.5). Moreover, x derivatives
of the solution also decay exponentially as T — 0, uniformly
in x.

Proof.  First, the exponential decay of 2! and its x-deriva-
tives can be easily seen from (2.9a) by the exponential decay
of wi and its x-derivatives. Now, submitting w,(0, x) = f'(4,(0,
XNawp(0, X3 — p'(he(0, x0)a 0 (0, x)} and A0, x) = 0 in
(2.9b) gives

dwit = f{hyhtt — wi. (2.10)
This ordinary differential equation clearly has a unique expo-
nential decay solution since A has exponential decay. That x-
derivatives of w{ have exponential decay is also trivial by
taking derivatives with respect to x on Eq. (2.10), using the

fact that the x-derivatives of AL also have exponential decay.
This completes the proof for the lemma. []

Remark. Lemma 2 and (2.8) give the initial layer solution,

wi(0, x) = (f' (K ()Y — p'(H(x))a.H(x). (2.11)

Higher-order terms and their initial conditions are determined
similarly but are omitted here since the interior expansion (1.3)
is only valid to O(e). By combining (2.8) with (2.11) we obtain
the initial conditions for the relaxation equation (1.3) as

0, x) = H(x),
w(0, x) = f(H'(x)) + e[f'(R'(x)) — p' (H(ONI R ).

By comparing with (1.3a) one sees that the initial layer projects
the initial data to the local equilibria.

Remark. Similar initial layer analysis can be carried out
for the more general relaxation system (1.1) and a similar
conclusion may be drawn.

3. THE NUMERICAL DISCRETIZATIONS

We introduce the spatial grid points X, j = ..., —1, 0,
1, ... with uniform mesh spacing Ax = xj.1, — X1 for all j.
The time level #, #;, ... is also spaced uniformly with space
step At = "' — r*forn = 0, 1, 2, .... Here the assumption of
a uniform grid is only for simplicity. We use U} to denote the
cell averages of U in the cell [x,_y;, X4 2] at time ¢~

U= i J f*'” U, x) dx.
1

=12

Consider the one-dimensional relaxation system
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U+ a F(lU)= 1 Q.
[
A spatial discretization in conservation form can be written as
, 1 1
a,U; + e (Fiyin— Fiop) = 3 (4R

where the numerical flux £, is to be defined in terms of the
known cell-average numerical quantities, Uj's, and the averaged
source term is defined by

_ _11_ Lz _ L Firuz 3
O=3;)/rowd=¢ ( o j de) + O(Ax?)
=AUy + O(Ax7).

Thus, for sufficiently accurate spatial discretizations we have,
with an accuracy of O(Ax?),

|
ol + Ax (Fisiz = Fian) = Q(U).

3.1. The Shock Capturing Spatial Discretizations

To define the convection flux Fj,\, we use the high order
Godunov scheme of van Leer [40], that is based on Roe’s
approximate solution of the Riemann problem [34] for the
homogeneous hyperbolic system,

U+ a.F(Uy=0.

During the reconstruction step slope limiters [40] are applied
in order to eliminate unphysical numerical oscillations. Note
here that the reconstruction and the Riemann solver do not
account for the presence of the source items.

3.2. The Correct Asympiotic Limit Analysis

For the relaxation system, it is natural to require that the
numerical scheme possess a discrete analogy of the continuous
asymptotic limit. Here the asymptotic analysis is defined in the
following sense. First, the asymptotic expansion is carried out
in terms of & under the coarse scaling Ax/Ar = O(1),
e/At <€ 1, Second, since the Chapman-Enskog expansion for
the continnous relaxation systemn is valid only for a smooth
selution, in our discrete system we have to impose the same
assumption, Thus all the discrete spatial derivatives, including
F'(h), are assumed to be (1), Therefore, unless otherwise
specified, we always have AA, = O(Af), where the operator
Ay is defined by AV, = Viyp — Vi for any vector V.
We do not, however, assume the time derivative to be O(1).
This allows us to determine the effect of the initial layer. Under
" these assumptions our asymptotic expansion illustrates the nu-
merical behavior only in the smooth region.

A (high order) scheme is said to have the correct asymptotic
limit if as € — 0, under the above assamptions, the limiting
scheme becomes a good (high order) approximation of the
equilibrium equations. The initial layer analysis in Section 3
suggests that the initial layer projects the initial data into a
local equilibrium. This same projection also leads from the
relaxation system to the equilibrium equation away from the
initial layer. In order to have the correct asymptotic limit with-
out resolving the initial layer, the numerical scheme should
intrinsically have the same mechanism, that is to say, the scheme
should project the numerical data, in or not in local equilibrium,
into a local equilibrium at every time step. Such a projection
in the first time step simulates the initial layer behavior without
resolving the initial layer. At later times this same projection
guarantees the correct numerical passage from the relaxation
system to the equilibrium equation. Mathematically such a pro-
jection is realized through

QU =0 foralln=1,

up to some approximation error which is a function of £ and
At. For the model problem (1.3), this implies

Wr— F(HY) =0 foralln=1.

3.3. A First-Order Splitting Scheme

By examining the asymptotics that leads from the relaxation
system (1.1) to the equilibrium system {1.2), it is natural o
design numerical schemes that simulate the same asymptotics.
The simplest way is to use a first-order splitting scheme that
combines a backward Euler method for the stiff source term
with a forward Euler method for the convection term. It is
given by

UO =y 4 %’ o), (3.1a)

Ur = U+ A FO,,. (3.1b)

Roughly speaking, the first step being fully implicit always
gives a projection into a local equilibrium (/) = 0 indepen-
dently of the initial data. This local equilibrium, after applied
to the second step, should give an equilibrium scheme that is
consistent to the equilibrium system (1.2). The ODE solver
being used here is the backward Euler method, which is both
A-stable and L-stable. We show that this scheme has the correct
asymptotic limit.
Applying (3.1) to the model problem (1.3), one has

HY=H", (3.2a)

W = W — % (WO — f(HDY), (3.2h)
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H™ = HY + AA. W, (3.2¢)
W= W+ AA, pI, (3.2d)
We have the following results:
e« Ifatr = ¢,
W"—f(H =0, (3.3)
then at t = ",
Wt — f(H™ 1) = O(A). (3.4)
In the intermediate step,
WO — f(HDY = 0. (3.5)

If at t = 1" the solution is not in local equilibrium, then

W+l 1y — £
w JOH*Y O(At+Ar)' (3.6)

In the intermediate step,

&

Wm - f(HM =0 (Z\_t) (3.7)

Cuse 1. The initial data in a local equilibrium. From (3.2b)
and (3.3),

W — W= — %E(W(l) — W+ W= ff(H(J)))
_ _ At
= WO =W E W fHY)  (38)
= — Q(W(l) — Wﬂ)
£

Thus

WO — Wr =10, 3.9

Applying this to (3.2b) implies
WO — f(HY) = 0.
Applying (3.9} in (3.2d) gives

Wn+l _f(HnH)
= W(i) _f(HnH) + O(AI)
(3.10)
=W"— f(H") + f(H" — f(H""} + O(AD)
= O(AD), g

In the last equality of (3.10) we used H**! — H® = Hm! —
H" = O(Ar). Thus (3.4) and (3.5) are true.

Case 2. The initial data not in a local equilibrium. Suppose
W — f(H" = O(1) # 0. Then (3.9) does not hold. Instead,
(3.8) only yields

&

W — W= — @‘(Wm -Wn+0 (At);
£
thus

1 Ar
W —Wwr=——— 0| =] =0).
W= A (s) om

Applying this in (3.2b) gives

W — fHD) = — i_‘ (WD — W =0 (Air)

Applying (3.2b) in (3.2d),

1

A+l a1y —
v JE) 1+ Atle

(we =& g = sees

o (W = FH™) + fH) = [

ro((z))
—0 (mi).

Hence (3.6) and (3.7) are true,

We have shown that, as long as the solution is bounded (by
numerical stability), W* — f(H") will always be O(Ar + g/Ar)
by the result (3.6) for general initial data, and at r = 1V €
("1, 1711 (3.7) is always valid. Thus we have the following con-
clusion.

« For any initial data, the splitting scheme (3.2) always
gives, for any n = 1,

" _ = ) £
W' —f(HH =0 ((At + At)’ EREY
and
_nlt
Wil — f(HhY =0 (At)’ (3.12)

fort e L ).
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Moreover, as ¢ — 0, by applying (3.12) in (3.2¢), after
ignoring the error terms, the splitting scheme (3.2) limits to
the equilibrium scheme

H* = H" 4+ AALfT 12 (3.13a)

Wn+l :f(H"H), (313b)
where

Fin = Wiiinlwnapan. (3.13¢)

(3.13a) is clearly the forward Euler method for the equilibrium
equation (1.4b). By (3.11) and (3.12), the scheme (3.2) approxi-
mates (3.13a) with an error ((g/Ar) and approximates (3.13b)
with an error Q(Ar + g/Ar). Thus, the splitting scheme always
has the correct asymptotic limit independently of the initial data.

Remark. We use the first-order splitting method just to
carry out the analysis and to illustrate the basic ideas. It does
not mean that we advocate the use of a first-order scheme.

3.4, The Strang Splitting

A frequently used splitting method for an inhomogeneous
hyperbolic system is Strang’s splitting [37]. If we call the
stiff ODE operators as #,(z) and the homogeneous convection
operator ¥F4(f) then the Strang splitting takes the form

Urtl = &, (At) LAANY, (%{) u-. (3.14)

2
This is a second-order splitting for ¢ = O(1) and Af, Ax < ¢,
as long as both &, and ¥; are of second-order discretizations.
In this section we will show that as ¢ — 0 while holding Ar
and Ax fixed, the Strang splitting becomes only a firss-order
approximation io the equilibrium equation (1.4b).

For the model system (1.3), since the variable w is linear in
the system, we can even assume that &, is the exact solution
operator. Thus in the stiff ODE step we do not introduce any
numerical error. The exact ODE solver, of course, also projects
the solution to a local equilibrium. For &, we use the second-
order explicit Runge—Kutta method. Applying the Strang split-
ting (3.14) to (1.3), one gets

H* = H" (3.15a)

WH =g, (%) (H", W) (3.15b)

HO = H* — AA Wi, (3.15c)

WO = W* — A pE (3.154)

H® = HS — AAWE,, (3.15¢)

W = W — AA, plb,; (3.151)
H® = YH* + HD), (3.15g)
WO = YW= + Wy, (3.15h)

CHT = O, (3.151)

Wl =9, (A?t) (HY, W), (3.157)

As & — (1, (3.15a)~(3.15b) simply projects the solution into a
local equilibrium

W* = f(H*) + O(e). (3.16)
Note that for n = 2, both (3.15a), (3.15b), and (3.15i), (3.15))
essentially make (3.16); thus we can disregard (3.15D)—(3.15))

in our analysis. Applying (3.16) to (3.15¢), one can reduce the
scheme (3.15) to

HO = H* —AA, fon + Ke), (3.17a)
WO = f(H™ — AL pLy, + Ole),; (3.17b)
HO = HO — AL, WO, (3.17¢)
W = WO XA, p (3.17d)

H™' = YH" + H®), 3.17e)

W = KW + Wy, (3.171)

Clearly (3.17a) is consistent to the equilibriumn equation (1.4b),
modulus an O(e) ervor. (3.17) overall seems to be a second-
order Runge—Kutta method for (1.4b), except that one needs
to justify that (3.17¢) is consistent to (1.4b). This requires

WO = fHM).
Using (3.17b) and (3.17a) implies

WO = f(H™ + O(At + &) = fIHY) + O(Ar + &). (3.18)
If one applies (3.18) in (3.17¢) then one indeed gets a consistent
discretization of the equilibrium equation (1.4b); however, the
O(Ar) error in (3.18) makes such an approximation only first
order! Thus in the regime & — 0 and &/Ar —» 0 the Strang
splitting is only a first-order approximation to the equilibrium
equation (1.4b).

Remark 1. A similar argument shows that one cannot im-
prove the resuit by using higher order Runge—Kutta methods
in the convection step.

Remark 2. If one uses a Godunov type integration in time
in the convection step rather than a method of line approach,
then such deterioration of the numerical results does not appear
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[27]. The reason for this is that the Godunov type time marching
scheme is a one step scheme that only uses the initial data
obtained from the first step of the ODE solver (3.15a)—(3.15b),
which is a good approximation of the local equilibrium. Thus
the result of this paper applies only to the methed of line ap-
proaches,

To fix the problem associated with the Runge-Kutta ap-
proach one just needs to add a good stiff ODE step between
t=and f = *in (3.17). This will reduce the error term
in (3.18). This motivates the development of our second-order
splitting scheme in the next section.

3.5. A Second-Order Splitting Scheme

In this section we introduce a second-order Runge—Kutta
Godunov splitting scheme which combines two explicit steps
for the convection terms and two implicit steps for the source
terms. If one views (3.1) as a splitting method in the Euler
setting, then this new splitling scheme is a natural second-
order extension in the Runge—Kutta setiing. It is a second-
order method when & is fixed, and it not only has the correct
asymptotic limit but the limiting scheme, as ¢ — 0 is again a
second~order approximation to the equilibrium system. The
scheme is

Ut=U"+a % Q(U*), (3.19a)
UD=U* = AN FE s (3.19b)
Ust=yo+ b%Q(U**) + c—AE—tQ(U*), (3.19c)
UD = =% — \A, F¥hns (3.194)
U = (U + U9, (3.19)

The coetficients a, b, and ¢ are to be determined. Roughly
speaking, this scheme has projections into the local equilibrivm
at two intermediate time steps, ¢* (which is the very first step!)
and t**, immediately followed by two convection steps. Due
to the projection at ¢* and **, these two convection steps will
relax to a limiting equilibrium scheme for the equilibrivm
system.
Scheme (3.19) has the following general properties:

(a) If @ = 0 then (3.19) reduces to

UO=yr— A FLi,
U(Z) = U(l) - )\A+F}I_)J/2,
fintl = %(U" + U(l)),

which is the second-order explicit TVD
method [35].

Runge-Kutta

{b) For fixed ¢ = O(1) it is second order if

Proof. See Appendix.

Remark. Like the second-order time discretization of Eng-
quist and Sjogreen [14], this scheme also contains a negative
parameter @ in the implicit term in (3.19). Since we only concen-
trate on the coarse (A7 > g) regime, this drawback does not
have any impact on the results presented in this article. In an
upcoming article this obstacle will be removed [4].

(¢) The L-stability analysis with F = () shows that this split-
ting method gives

— 2
Lt = (Hl +1q7 qzq /2) U"*%U" asg— —oe.

Although this method is not L-stable, it does damp any oscilla-
tion introduced by the transient behavior with a rate of 3.
Applying scheme (3.19) to the model problem (1.3),

H*= = H" (3.20a)
At
W =W —a—(W* - fH"); (3.20b)
HO = H* = MA, WE s, (3.20¢)
WO = W — f\A+PJ*—|r2§ (3.20d)
H** = g, (3.20e)
Ar
Wk = W — b;(W** — f(H**))
At :
— e (W = fUH™); (3.20t)
H® = H** — MW,
W = W — A, p¥%,; (3.20g)
H#' = YH" + H®), (3.20h)
Wl = JWr + W), (3.201)

Scheme (3.20) has the following properties:

(d) Although (3.20) contains implicit nonlinear terms, due
to the special structure of the source term, one can avoid solving
nenlinear algebraic equations. This is not true for more general
source terms.

{(e) Suppose ab #= 0; i.e., both (3.20b) and (3.20f} are genu-
inely implicit, and At & &. Then,

s Ifatt =1,
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W~ f(H) =0, {3.21)
then at t = "' the scheme (3.20) gives
Wrr — f(H™) = §W" — f(H™) + O(Ar).  (3.22)
In the intermediate steps,
W* — f(H*) =0, W**—f(H**)=0(s). (3.23)

Ifat t = t" the solution is not a local equilibrium, thenart = 1,

&

W~ fIH) = 5(W" — f(HD) + O (At + At), (3.24)

and

We begin with Case 1. First, if (3.21) holds, then (3.20a),
(3.20b} give

we = we= —a 2o — we = ) = —a 2L o - W,

thus
W* — Wi =0, (3.26)
Applying (3.26) in (3.20b) gives
W — f(H*) = —aim(w* —Wwih=0. (327
By (3.20¢), (3.20d)
HO — H' = HO — H* = O(A), WO — W* = 0(Ar). (3.28)
Using (3.27) and (3.28) in (3.20f),
W — W = —b%E(W** — fUH**))
= —b%{(W** — WO L WO — FHYY)
= ~p 2 s — w0y - b2 (e - fiar)

2
-o(%)
e

2
= —b%(W** - W) + O(A’ )

&

S0

. 1 Ar?
ET S Wo i -
w w 1+b(AtIe)O(a)

=0 (i—t) %) (%’3) = 0 (Ad).

Applying (3.29) in (3.20f), along with (3.27), gives

(3.29)

W ﬁf(H**) = E%} [W** — W 4 c%(W* _f(H*)):I

E
=0 (E) OfAn = O(e).

(3.20g), (3.20h) give

H? — HY = HY — H** = O(Ar), WP — W** = O(As).

(3.30)
Combining (3.30) with (3.28) gives
H® — H* = O(Af).
Now from (3.201), (3.20j),

Wl fHY) = MW E W) — 4 — BF(HT) + OAR)
= (W' — f(H") + o(W? — f(H™)) + O(AF)
= 3W" — fIH) + X W** — fiH**) + O(An
=W~ f(H") + Oe + A
= (W* — f(H") + O(A1).

Thus (3.22) and (3.23) are shown.
Next, assume that at ¢ = ¢" the solution is not in local equilib-

rium, so W' — f(H") = O(1) # Q. Then, due to the underresolu-
tion of the initial layer, (3.20a), (3.20b) imply

W — W = —aés—‘(W*— W”)—a%:—t(w*'ﬁf(H"))

=kaé€£(W*—W“)+O(é£),

>

W*__Wn=

Lo (95) = 0(1).

1 + Atie £ (331)

Applying (3.31) in (3.20b) gives
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&

L - ®Yy = —
W* —f(H*) =0 ( Az)'
Applying similar arguments to (3.20f) gives

y—ol£
WH* — f(H**) = 0 (A;)‘

Furthermore, one has

Wt = % (W + Wiy = %(W" + W**) + O(AD)
1 &
== (W + f(H*)) + + =
2( FH)+ 0 (At At)'
Therefore,

7 el _f(HnH) — % We + %f(H**) — %f(Hn) — %f(HG?)

&
+ —
o (At + At)

(W = f(H) + 2 () = fCH)

1

2
>4

+O(Ar+E)

._,1_ " — n .E_
=W f(H))+O(At+At).

Thus (3.24) and (3.25) are true. |

Note that (3.24) and (3.25) are derived independently of
W —~ f(H" (as long as it is O(1)); thus they are true for all
n = 1 independently of the initial data W° — f(H®. Therefore,
we have the following:

* For any (1) initial data, the splitting scheme (3.20)
always gives

Wn — F(H" = %(W" — FHY) + O (Ar + i) (3.32)
and
_ & o *Fy — g
W — f(H¥) = O (AJ, Wk — FHR) = O (AJ, (3.3%)

Jor all 0 = 1, where ¥, %% € (171, 1),

Proof, By (3.24)foralin =1,

W — fH") = %(W”“ ~fH") + 0 (Ar + f})

= 5 (W — ()
(3.34)

] 1 g
ke =
+ (1 +2 +2”—1)0(AI+AI)

=Lowo - £
= S (W f(HO))JrO(AH—At).

(3.33) foliows easily from (3.34) and the analysis that leads
to (3.25).

By (3.32), W" — f(H") decays to zero with a decay rate of
3, up to the error of {At + &/Ar). Thus we have:

(f) Scheme (3.20) has the correct asymptotic limit as
t —» o for any O(1) initial data. More specifically, as £ — 0,
it is limited to

HY = H"— AL, (3.35a)

H® = H — AL %, (3.35b)
H™ = Y5 + HO, (3.35¢)
Wl = F(H™. (3.35d)

Here f7_, and £, are defined the same way as in (3.13c).
This is the second-order TVD Runge—Kutta method for the
equilibrium equation (1.4), with the spatial discretizations fi_,
being W;.,-evaluated at the local equilibrium W = f(H). Thus
this new splitting method is limited to a second-order method
of the equilibrium equation as & — (), which is the major
difference from the Strang splitting. By (3.33), the splitting
scheme (3.20} approaches (3.352)—(3.35¢) with an error of
O(=/AD, and to (3.35d) with a decay rate of § up to an error
of O(Ar + &/Af). In conclusion, the splitting scheme (3.20)
always has the correct asymptotic limit in long time indepen-
dently of the initial data, and the limiting scheme maintains its
second-order accuracy and thus should perform better than the
Strang splitting.

4. NUMERICAL EXAMPLES

We now test these methods on the following example:

Bk + dw =0, (4.1a)
aw + ah + 3k = — 108w — 34D, (4.1b)

The limiting equations for this problem are
w=gh'— 10781 + A — ) a.h, (4.2a}
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Al + 8,600 = 1070 8,[(1L + & — W) 3.1, (4.2b)

In the first exampie we choose the initial condition for & as

1 for0 < x<<0.2,
H(x) =
02 for02<x<],

(4.3a)

while for w the non-local-equilibrium initial data are taken o be

wi) = =) (4.3b)
In this example, £ = 1073, We use reflecting boundary condi-
tions. In all the numerical examples presented in this section
we always take Ax = 1072,

Given the initial condition (4.2a) the solution of the equilib-
rium equation (4.2b), to the leading order, forms a shock moving
to the right with speed 0.6 determined by the Rankine—Hugoniot
jump condition, Note that for this problem the CFL number

CFL=max\/E£=\/§At—=z\.
n Ax Ax

We now test the three splitting schemes discussed in last
section. In all the schemes we use CFL = 0.37 (Ar = 0.0025)
and output the numerical solutions at t+ = 0.5 in Fig. 1. Figures
la, b, and ¢ show the results of &, w, and w — f(h) given by
the first-order splitting scheme (3.1), the Strang splitting (3.15),
and the new splitting (3.20), respectively. All the schemes
capture the correct equilibrium behavior, but Strang’s splitting
gives inferior results, compared with the other two spliitings.
In Fig. 1b we do not plot w — f(H) for the Strang splitting
since that is O(g) by the exact ODE solver that we use.

In the next exarmple we still solve (4.1) but with the initial
condition given by

Hix) =1+ 0.2 sin(8mx) (4.4a)
and the iocal equilibrium condition for w,
wilx) = Sri(x). (4.4b}

The boundary condition is periodic. We choose Ar = 0.005
and output the solutions of the Strang splitting and the new
splitting at £ = (1.3 in Fig. 2. One can clearly see that the Strang
splitting exhibits a typical first-order nature for a solution with
complicated structures, while the new splitting gives a results
of a typical second-order TVD (total-variation-diminishing) be-
havior.

5. SOME APPLICATIONS

In this section we apply the second-order splitting scheme
(3.19) to two more general relaxation systems, These include

the Broadwell model of the nonlinear Boltzmann equation of
rarefied gas dynamics and the Eulerian gas dynamics with heat
transfer. We believe that scheme (3.19) 1s also applicable to
other discrete velocity Kinetic equations and gas dynamics with
thermo-nonequilibrium.

5.1. The Broadwell Model

A simple discrete velocity model for a gas was introduced by
Broadwell {3]. Tt can be derived by looking for one-dimensional
solutions of a four-velocity model. The gas is defined by a
density function in phase space satisfying

6rf+ + axf+ = _:1;' (f+f- _f%),

Af- = Bf =~ (- = B, (5.1)

Afs = =5 (F = 1D,

Here f,, f-. and f, denote the particle density distribution at
time ¢, position x, with velocity 1, —1, and 0, respectively; &
is the mean free path. The fluid dynamic variabies for the
Broadwell mode! are density p and momentum m defined by

p=fetYptf, m=fi—f,
In addition, define

z=f + f

then the Broadwell equaticns can be rewritien as

dhp+om=0, 58.2a)
dm+adz=0, (5.2b)
dz+ om= 51; (pr+ m* — 2p2). (5.2¢)

A local Maxwellian (or local equilibrium) in (5.1) is a density
function that satisfies

f% $f+f—,

or in fluid vanables,

2= + ) (5.3)
p

As g — 0, the following model Euler equation can be derived
by applying (5.3} in (5.2b):
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alp+ ax‘rn = 05

dm + a,,—l-(p2 +m?) = 0.
2p

By including the O(g) correction, one obtains a model Navier—
Stokes equation [3].

We now test the van Leer new. splitting scheme for the
Broadwell equation (5.2) with £ = 107* by solving a Riemann
probiem with the initiai data

p=1, p=02, m=m=0, g=z=1. (4
Here the initial data are not a local equilibrium. The initial
jump appears at x = 0.5. We integrate the Broadwell equation
over [0, 1] with 200 spatial cells and At = {.0025. The boundary
condition is reflecting. The soluiion output at ¢+ = 0.25 and
depicted in Fig. 3, contains a left-moving rarefaction and a
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Ax = 0.01, Ar = 0.005: above, the Strang splitting (3.15); below, the new
splitting (3.20).

right-moving shock wave. Although the mean free path & =
107} is underresolved, the numerical scheme does capture the
correct behavior given by the model Euler equations.

5.2. Eulerian Gas Dynamics with Heat Transfer

Coensider the one-dimensional Euler equations for gas dy-
namics, coupled with a simplified heat transfer rate equation
with a constant temperature bath [31]:

dp + d,pu =0, (5.5a)
3 pu) + d{pu’ + py =0, {5.5b)
3L pE) + ddpuE + up) = —Kp(T — Tp).  (5.50)

In this system, p is the density, u the velocity, £ = ¢ + u¥/2
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numerical solutions with Ar = 0.0025 (CFL = 0.5).

the energy per unit mass, € the irternal energy, T the tempera-
ture, and p the pressure. Away from equilibrium we assume
the gas is a y-law gas, i.e,, p = (y — 1)pe. We choose units
of temperatore so that T = ¢, K and T}, are positive constants.
K = 1 is the heat transfer coefficient. T is the temperature of
the constant temperature bath. The characteristic speeds of the
system are u — ¢, u, and u + ¢, where ¢ = Vyp/p. At equi-
librium,
T=T, or E=T,+ 3

the flow is governed by the Eulerian equations for isothermal
flow:

dp+ dpu=0,

apu) + 8,(pu* + py) = 0.

The pressure py is governed by an isothermal gas law
p(p) = {y — Dpe,, where e, is the internal energy of the
gas at T' = T, The equilibrium characteristic speeds are u —
cy and u + ¢y, where '

cx = Vplp=V{y— De.

We now test the van Leer-new splitting scheme for Egs. (5.5)
with X = 10® by solving a Riemann problem with initial data
m=m=0 E=E=1 (56)

F2/ 1, o= 0.2,

Here the initial data are not the local equilibrium. The initial
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jump appears at x = 0.5. We integrate over [0, 1] with 200
spatial cells and Ar = 0.002. The boundary condition is re-
flecting, The solution, output at + = 0.3 and depicted in Fig.
4, contains a left-moving rarefaction and a right-moving shock
wave. Although the relaxation time £ = 1/K = 107% is underre-
solved, the numerical scheme again captures the correct macro-
scopic behavior.

6. CONCLUSIONS

In this article we analyzed some underresolved, spiitting
schemes for hyperbolic systems with stiff relaxation terms. We
indicate that such a stiff source problem is not merely a stability
problem, and classical high order splitting method may fail to
maintain the higher order accuracy when the relaxation time

is not terporally resolved. To design a high order scheme that
gives correct physical behavior, yet also maintains high order
accuracy in the underresolved regime, the scheme should have
a discrete analogue of the asymptotic limit of the continuous
system. A new second-order splitting scheme is developed
which has the correct asymptotic limit even if the initial layer
and the small relaxation time is not resolved. The new scheme
limits to a second-order scheme as the relaxation time shrinks
{0 zero.

The asymptotic analysis carried out here is for a one-dimen-
sional 2 X 2 p-systems. It is also applicable to general N X N
relaxation systems in higher dimensions. Simiiarly, the second-
order splitting scheme (3.19) can also be used for general hyper-
bolic systems with stiff relaxation terms (1.1} in any dimension,
Besides the model problem (1.3}, we have tested this splitting
scheme on two more general one-dimensional relaxation sys-
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tems in which the numerical results do have the correct asymp-
totic limit.

More importantly, the studies here also led to the develop-
ment of the relaxation schemes for nonlinear systems of hyper-
bolic conservation laws [24]). This new class of TVD shock-
capturing schemes do not use any Riemann solver and can be
easily extended to higher dimensions.

APPENDIX: THE ORDER OF ACCURACY OF THE
SPLITTING SCHEMES

Here we study the accuracy of the splitting scheme (3.19)
for & = O(1). For simplicity consider the linear case with
f(U) = AU and g({7) = BU, where A and B are both constant
matrices. Let £ = 1. Then (3.19) becomes

U* = U=~ aB At U*, (A.12)
U0 = U* — A Ar U (A.1b)
Utk = 0 — pBAs U** — cBAtU*,  (A.lc)
UD = U+ — A At U*%; (A.1d)
Ut = YU+ U, (A.le)

Assume that ||A]| At << 1 and ||B|| Ar < 1 such that the invert
of the matrices in the subsequent context is valid. From (A.1)
we get

U* = (I + aB Aty \U?, (A.2a)
UD = (I — AADU* = (I — A A + aB Asy'U",  (A.2b)
U** = (I + bB Aty (U — cB At U*)
=+ bBAY((I — A At — cB A
(I + aB Ay HUP, (A.2¢)
UD = (I - A ADU**
=(—AAYI+ BBAN (I — AAt - cBAP)  (A2d)

(I + aB Ay YU

Here (A.2b) uses (A.2a), (A.2¢) uses (A.2b), and (A.2d) uses
{A.2¢). Note that in general AB # BA. After ignoring the (A7)
terms, we get from (A.2d) that

U = {I— 24 + (a + b + c)B) At
+ [A?+ (2a + b + 0)AB + bBA
+ (g + bYa + ¢) + PHBY AU
Therefore by (A.le),
'={I—[A+ia+b+c)Bl At
+ A+ (2a + b + ¢)AB + bBA
+ ((a + b)(a + ¢) + BHB AU

(A.3)

From ¢, to ¢,4, the exact solution is

LVPH — e*Ar(A+B)Un
=[—(A+B)Ar+ HA*+ AB + BA + BH AP
+ O(APY U™

(Ad)

By comparing (A.4) with (A.3) one should equate the coeffi-
cients of every corresponding terms. This gives the following
system of linear equations:

atb+c=2,

it b+e=1,

“ ¢ (A.5)
b=1,

{a+ba+cy+ b =1

Equations (A.5) are consist of four equations but only three of
them are independent. Solving (A.5) gives
a=—-1, b=1, ¢=2

With this choice of coefficients we get a second-order ODE
solver.
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